## How to Program an Abacus

## Baptiste Mélès 梅乐思

Archives Henri Poincaré－Université de Lorraine（Nancy）

## SAW

Cultures of computation and quantification March 25－29， 2013

## Question

- What functions can be computed with different kinds of non-mechanical calculating tools?
- Examples of calculating tools: abacus, counting-rods, logarithm tables, slide rule, counting on paper..
- Examples of limitations: logarithm tables and slide rule have no addition.
- What can I compute with my abacus? systems of linear equations? logarithms?


## Question

- What functions can be computed with different kinds of non-mechanical calculating tools?
- Examples of calculating tools: abacus, counting-rods, logarithm tables, slide rule, counting on paper...
- Examples of limitations: logarithm tables and slide rule have no addition.
- What can I compute with my abacus? systems of linear equations? logarithms?


## Question

- What functions can be computed with different kinds of non-mechanical calculating tools?
- Examples of calculating tools: abacus, counting-rods, logarithm tables, slide rule, counting on paper...
- Examples of limitations: logarithm tables and slide rule have no addition.
- What can I compute with my abacus? systems of linear equations? logarithms?


## Question

- What functions can be computed with different kinds of non-mechanical calculating tools?
- Examples of calculating tools: abacus, counting-rods, logarithm tables, slide rule, counting on paper...
- Examples of limitations: logarithm tables and slide rule have no addition.
- What can I compute with my abacus? systems of linear equations? logarithms?


## Classical answers

- Two possible answers:
- A posteriori (history of mathematics): "just read your classics."

- A priori (computer science): "just make a machine."
- Alan Turing (1912-1954), "On Computable Numbers" (1936): the definition of "Turing machines" begins with the behaviour of a human "computer" (i.e. the calculating man); - Joachim Lambek (born 1922), "How to Program an Infinite Abacus" (1961)


## Classical answers

－Two possible answers：
－A posteriori（history of mathematics）：＂just read your classics．＂
－Cheng Dawei 程大位（1533－1606），Suanfa Tongzong 算法統宗（1592）．
－A priori（computer science）：＂just make a machine．＂
－Alan Turing（1912－1954），＂On Computable Numbers＂（1936）： the definition of＂Turing machines＂begins with the behaviour of a human＂computer＂（i．e．the calculating man）；
－Joachim Lambek（born 1922），＂How to Program an Infinite Abacus＂（1961）

## Classical answers

－Two possible answers：
－A posteriori（history of mathematics）：＂just read your classics．＂
－Cheng Dawei 程大位（1533－1606），Suanfa Tongzong 算法統宗（1592）．
－A priori（computer science）：＂just make a machine．＂
－Alan Turing（1912－1954），＂On Computable Numbers＂（1936）： the definition of＂Turing machines＂begins with the behaviour of a human＂computer＂（i．e．the calculating man）；
－Joachim Lambek（born 1922），＂How to Program an Infinite Abacus＂（1961）．

## Limits

- A posteriori (history of mathematics): "just read your classics".
- But the classics only describe what can be done, and not what cannot be done.
- A priori (computer science): "just make a machine".
- But we lose the cultural side of the problem: the role of the human hand, the pedagogical techniques... And infinite abaci do not exist.


## Methodology

Some concepts of computer science may help us to understand how computing tools work:

- data structures: the objects of the calculus, with which we compute;
- functions or procedures: the acts of the calculus, performed by human hands.

See Karine Chemla, Les Neuf Chapitres, which uses Knuth's computing model (The Art of Computer Programming).

Data structure of the abacus
Operations on the abacus
Pedagogical techniques for the abacus
Conclusion

## Data structure of the abacus



## What are abaci?

There are a lot of different kinds of abacus:

1. Chinese suanpan 算盤:


- 13 or more rods;
- 2 quinary beads on each rod;
- 5 unary beads on each rod.


## What are abaci?

2. Japanese soroban 算盤:


- from 13 to 21 rods;
- 1 quinary bead on each rod;
- 4 unary beads on each rod.


## What are abaci?

3. Russian schoty (счёты):


- 7 or more rods;
- 10 unary beads on each rod (no quinary bead);
- 4 beads for quarters of rubles;
- 4 beads for quarters of kopeks (until 1916).


## What are abaci?

4. French abacus (boulier):

- 10 unary beads on each rod.


## What are abaci?

5. One particular kind of Roman abacus:


- 1 quinary bead on each column;
- 4 unary beads on each column;
- units are sometimes fixed.


## How to count on an abacus?

First question: what are the data structures (the objects of computation) on the abacus?


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## How to count on an abacus?

How to count on the suanpan:


## What is a number?

What is a number on an abacus?
It depends on your abacus:

- soroban: decimal numbers;
- boulier. decimal numbers;
- schoty: absolute decimal numbers;
- Greek and Roman abaci: (floating or absolute) decimal numbers;
- suanpan:
- decimal numbers;
- hexadecimal numbers for 1 jin 斤 $=16$ liang 兩.

How many numbers can we write on an abacus?

We can encode one number, for example 123456789 , on the suanpan:


## How many numbers can we write on an abacus?

Sometimes, it can be useful to write down two numbers, typically for the greatest common divisor (for instance of 49 and 91):


## How many numbers can we write on an abacus?

And sometimes even three numbers, as for "euclidian" division (divisor, quotient, dividend or rest), as for $91=49 \times 1+42$ :


## Data structure of the abacus

(1) Data structure: one register containing a list of a few numbers.
(2) Unlike the counting rods, space is very limited: one can hardly write more than one or two numbers. This will be a problem, since most of our arithmetical operations (addition, multiplication...) are binary.

Introduction
Data structure of the abacus
Operations on the abacus

Addition without carry

## Basic operations

Second question: what are the basic operations on an abacus?

## Addition without carry

Let us begin with an addition without carry: $12+81$.
(1) Reset the abacus:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(2) Encode the first number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(2) Encode the first number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(2) Encode the first number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(2) Encode the first number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(2) Encode the first number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(3) Add the second number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(3) Add the second number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(3) Add the second number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(3) Add the second number:


## Addition without carry

Let us begin with an addition without carry: $12+81$.
(9) Read the result:


## Theorem

$12+81=93$.

## Addition with carry

Let us now compute an addition with carry: $93+234$.
(1) Reset the abacus:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(2) Encode the first number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(2) Encode the first number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(2) Encode the first number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(2) Encode the first number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(2) Encode the first number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(3) Add the second number:


## Addition with carry

Let us now compute an addition with carry: $93+234$.
(9) Read the result:


## Theorem

$93+234=327$.

## Multiplication

Let us compute $235 \times 14$.


## Multiplication

Let us compute $235 \times 14$.


## Multiplication

Let us compute $235 \times 14$.

because $2 \times 1=2$

## Multiplication

Let us compute $235 \times 14$.

because $2 \times 4=8$

## Multiplication

Let us compute $235 \times 14$.

because $3 \times 1=3$

## Multiplication

Let us compute $235 \times 14$.

because $3 \times 4=12$

## Multiplication

Let us compute $235 \times 14$.

because $5 \times 1=5$

## Multiplication

Let us compute $235 \times 14$.

because $5 \times 4=20$

## Multiplication

Let us compute $235 \times 14$.


## Theorem

$235 \times 14=3290$.

## Unary operations

- What can we observe? At each step of our computations, there was one and only one number on the abacus.


## Theorem

Addition and multiplication are unary operations.

## Unary operations

- What can we observe? At each step of our computations, there was one and only one number on the abacus.


## Theorem

Addition and multiplication are unary operations.

Introduction
Data structure of the abacus
Operations on the abacus

## Some words about curryfication

How is it possible? How is it that we can transform a binary operation into an unary operation?

## Definition

Curryfication (Schönfinkel, Curry) = transformation of an n-ary function into a mere composition of unary functions.

## Some words about curryfication

## Definition

Curryfication (Schönfinkel, Curry) = transformation of an n-ary function into a composition of unary functions (provided that their respective "values" can themselves be functions).

## Example

| Without curryfication | After curryfication |  |
| :---: | :---: | :---: |
| 12 | 81 |  |

## Some words about curryfication

When we compute $12+81$ :

- the operands play asymmetrical roles:
- 12 is a number, a passive object, represented on the tool;
- 81 is part of a function; it is an act of my hand;
- the result does not occupy a distinct place: it results from the transformation of the input number;
- there is no "variable assignment" (numbers put in memory during the computation). This is an other difference with the counting rods (see Karine Chemla, Les Neuf Chapitres).


## Computational consequences

Since there is no variable assignment, intermediary results can not be memorized. As a consequence, some operations are not possible because of their very syntactic tree.


## Computational consequences

- $(a+b)+c$ is computable,
- $a+(b+c)$ is not computable.


Theorem
Addition is not associative.

Introduction
Data structure of the abacus
Operations on the abacus

## Computational consequences

- $(a+b)+c$ is computable,
- $a+(b+c)$ is not computable.



## Theorem

Addition is not associative.

## Computational consequences

- $(a+b) \times c$ is computable,
- $(a \times c)+(b \times c)$ is not computable.



## Theorem

Multiplication is not distributive.

Introduction
Data structure of the abacus
Operations on the abacus

## Computational consequences

- $(a+b) \times c$ is computable,
- $(a \times c)+(b \times c)$ is not computable.



## Theorem

Multiplication is not distributive.

## Computational consequences

Can we at least save the commutativity of addition?

## Fibonacci's commutative addition



|  | Key | for | Eight |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | and | 8 | make | 16 |  |  |  |
| 8 |  | 9 |  | 17 |  |  |  |
| 8 | 10 |  | 18 |  | Key | for | Nine |
| and | 9 | make | 18 |  |  |  |  |
| 9 |  | 10 |  | 19 |  |  |  |

## Fibonacci's commutative addition



## Theorem <br> $3+2=2+3$.

Let us compare $14+27$ and $27+14$.

| $14+27:$ | $27+14:$ |
| ---: | ---: |
| 14 |  |
| $+\quad 7$ | 27 |
|  |  |

Let us compare $14+27$ and $27+14$.

| $14+27$ | $27+14$ : |
| :---: | :---: |
| 1 | 1 |
| 14 | 27 |
| + 27 | + 14 |
| 1 | 1 |

Let us compare $14+27$ and $27+14$.

| $14+27$ : | $27+14$ : |
| :---: | :---: |
| 1 | 1 |
| 14 | 27 |
| + 27 | $\begin{array}{r} \\ +\quad 14 \\ \hline\end{array}$ |
| 41 | 41 |

## Theorem

$14+27=27+14$ (and for the same reasons).

## Cheng Dawei＇s instructions for addition

| Chinese text | Instructions | Operation |
| :---: | :--- | :---: |
| 下五除三 | （move）down（one）quinary（bead） <br> （and）remove three（unary beads） | $4+2=4+5-3$ |
| 下五除一 | （move）down（one）quinary（bead） <br> （and）remove one（unary bead） | $2+4=2+5-1$ |

## Theorem

$$
2+4 \neq 4+2
$$

| Chinese text | Instructions | Operation |
| :---: | :--- | :---: |
| 下五除一 | （move）down（one）quinary（bead） <br> （and）remove one（unary bead） | $2+4=2+5-1$ |
| 下五除一 | （move）down（one）quinary（bead） <br> （and）remove one（unary bead） | $3+4=3+5-1$ |

## Theorem

$2+4=3+4$ ．

## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27$ :
Reset the abacus:

$27+14:$
Reset the abacus:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27$ :
Encode the first number:

$27+14:$
Encode the first number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27$ :
Encode the first number:


$$
27+14:
$$

Encode the first number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27:$
Add the second number:


$$
27+14:
$$

Add the second number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27:$
Add the second number:


$$
27+14:
$$

Add the second number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27:$
Add the second number:


$$
27+14:
$$

Add the second number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27:$
Add the second number:


$$
27+14
$$

Add the second number:


## Cheng Dawei's instructions for addition

Let us compare $14+27$ and $27+14$.
$14+27:$
$27+14:$
Add the second number:


Add the second number:


## Theorem

$14+27=41$ and $27+14=41$ (but not for the same reasons).

## Cheng Dawei's instructions for addition

Addition on an abacus is:

- denotationally commutative (the result is the same),
- but operationally not commutative (the operations are different).



## Cheng Dawei's instructions for addition

Can we even speak of an addition table in Cheng Dawei's book?

## Cheng Dawei's instructions for addition



## Cheng Dawei＇s instructions for addition

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  | 141 | 1मा1 川标干 | $1+$ |
| 可人时室1 |  | H－9 | $1+$ |
| 㞽长 や如川娃1＋ |  |  |  |
| 人划1如｜ |  |  |  |
|  | 141 | 11人时紗11 | \｜14 11 |
|  |  | ＋H1 H + |  |
| 火䅅居列1 |  | $\pm \pm$－ |  |
| 人製1娃1 |  | ＋2欵1 | $1+$ |
|  |  |  | 凹 |
|  | 141 | 11 H11 MKH | ＊11 |
| 目下时突1 |  |  | $1+$ |
|  |  |  | $11+$ |
| 人或11 |  | ＋${ }^{\text {人 牫1 }}$ | $1+$ |
|  | 141 | 11411 －111 | 제걸 |
|  | Hト成 | k－4k T － | くНく |
|  |  |  |  |
|  |  | ＊＊ |  |
|  | 011 年1 | 0111 枵 | 1111年团 |
|  | －1 川辰川 | 1川きた长 | リリリ号大 |

## Cheng Dawei's instructions for addition



123456789

## Cheng Dawei's instructions for addition



123456789
$+100000000$
223456789

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+100000000 \\
+20000000 \\
\hline 243456789
\end{array}
$$

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+100000000 \\
+20000000 \\
+3000000 \\
\hline 246456789
\end{array}
$$

## Cheng Dawei's instructions for addition



123456789
$+123456789$
246913578

## Cheng Dawei's instructions for addition



123456789
$+123456789$
$+123456789$
370370367

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
\hline 493827156
\end{array}
$$

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
\hline 617283945
\end{array}
$$

## Cheng Dawei's instructions for addition



| 123456789 |
| ---: |
| +123456789 |
| +123456789 |
| +123456789 |
| +123456789 |
| +123456789 |
| 740740734 |

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
\hline 864197523
\end{array}
$$

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
\hline 987654312
\end{array}
$$

## Cheng Dawei's instructions for addition



$$
\begin{array}{r}
123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
+123456789 \\
\hline 1111111101
\end{array}
$$

It is not a table of addition, but an exercise.

## Cheng Dawei's instructions for addition

Cheng Dawei's "table of addition" is not even complete:

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 1 |
| 1 |  | 1 | 1 |  | 1 | 1 |  | 1 | 1 |  |
| 2 |  | 1 | 1 |  | 1 | 1 |  |  | 1 | 1 |
| 3 |  | 1 |  | 2 | 1 |  | 2 | 2 | 1 | 1 |
| 4 |  | 1 | 2 | 1 | 1 | 1 | 1 |  | 1 | 1 |
| 5 |  |  |  |  |  | 2 |  | 2 | 1 | 1 |
| 6 |  | 1 | 1 | 1 | 1 |  | 1 |  | 1 | 1 |
| 7 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 |  |
| 8 |  | 1 | 1 |  | 1 | 1 |  |  | 1 | 1 |
| 9 |  | 1 | 1 |  | 1 | 1 |  | 1 |  | 1 |

## Cheng Dawei's instructions for addition

It is not complete, even up to commutativity:

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 1 | 1 |
| 1 |  | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 |
| 2 |  |  | 1 |  | 3 | 1 | 1 | 1 | 2 | 2 |
| 3 |  |  |  | 2 | 2 |  | 3 | 4 | 1 | 1 |
| 4 |  |  |  |  | 1 | 1 | 2 | 1 | 2 | 2 |
| 5 |  |  |  |  |  | 2 |  | 3 | 2 | 2 |
| 6 |  |  |  |  |  |  | 1 | 2 | 1 | 1 |
| 7 |  |  |  |  |  |  |  | 2 | 1 | 2 |
| 8 |  |  |  |  |  |  |  |  | 1 | 1 |
| 9 |  |  |  |  |  |  |  |  |  | 1 |

This "table" does not teach the list of all possible additions, but just the set of elementary techniques. It is an operational pedagogy.

## Conclusion

On an abacus,

- "numbers" are not always numbers: they may be acts;
- neither addition nor multiplication is a binary operation;
- addition is neither associative nor commutative;
- addition does not require a table;
- multiplication is not distributive.


## Conclusion

When we study a computing tool, we have to forget what we know about these operations.
All mathematical properties are not always effective on computing tools.
Some concepts of computer science (data structures, curryfication, variable assignment, semantics of programming languages) can help us describe the properties which are effective on computing tools.

## Bibliography

－Cheng Dawei 程大位，Suanfa Tongzong 算法統宗， 1592.
－Karine Chemla and Guo Shuchun，Les Neuf Chapitres， 2004.
－Chen Yifu，Les Différents Modes de manipulation des boules du boulier chinois à l＇époque des Ming en Chine， 2007.
－Kojima Takashi，The Japanese Abacus：its Use and Theory， 1954；Advanced Abacus：Theory and Practice， 1963.
－Joachim Lambek，＂How to Program an Infinite Abacus＂， 1961.
－Alain Schärlig，Compter avec des cailloux， 2001.

