

Explorer les codes et textes de MULTICS

Maarten Bullynck (Paris 8 & UMR 7219 Sphère)

Systèmes d'exploitation: Quelques éléments
d'histoire

● La question: Qu'est-ce un système d'exploitation?

● Préhistoires

● Preparatory routine (1947, von Neumann & Goldstine, IAS machine)

● Utility programs, executive routines (années 1950); Comprehensive system of service
routines (Whirlwind, 1952)

● Premiers systèmes d'exploitation (monitor systems, supervisor) fin années 1950:

● IBSYS sur IBM (1958)

● Direct Input sur TX-0 (1958) ...

● L'Age classique des systèmes d'exploitation, années 1960

● OS/360 pour l'IBM/360 (1964 ff)

● Multics (MIT, GE, Bell) (1965 ff)

● MCP, Burroughs (1966)

● THE multiprogramming system, Dijkstra (1968)

● Monitor, DEC (1968)

● Unix (1969/71) ...

La discussion des années 1960:
Batch processing vs. time sharing

(traîtement en lots vs. temps partagé)
Traîtement
en lots

Temps
partagé

Quelques points de l'histoire de Multics

● L'idée du temps partagé (time-sharing, 1958-1960, Bemer, Strachey, McCarthy...), développer des
modes interactifs d'utilisation et distribuer l'usage des ressources

● CTSS (Compatible Time Sharing System) sur un IBM 7094, développé par F. Corbató et
collaborateurs à MIT, pour démontrer la faisibilité du partage de temps (1961-1963 ff)

● Project MAC (1963), financé par l'ARPA, promouvoir le time-sharing

● A partir de CTSS développer un système d'exploitation complet et complexe: MULTICS (Multiplexed
Information and Computing Service) (1964-1969 ff)

● Collaboration entre GE, MIT et Bell Labs, sur un ordinateur GE-645

● 1965 Fall Joint Computer Conference, présentation de 6 papiers

● PL/1 comme langage de programmation

● 1967, anneaux de protection

● 1969 première version sort

● 1969, Bell Labs sort du projet; 1970 GE vend ses activités à Honeywell/Bul

● 1974 Access Isolation Mechanism (AIM) ajouté et développement d'un noyau de sécurité

● 1985, Multics recoit B2-certificat de sécurité

● Une trentaine d'installations en France dans les années 1980 via Bull

● Dernières installations (surtout militaires) fermées autour de 1995

Les langages de Multics

● PL/1, langage impératif de haut niveau, était choisi comme langage d'implémentation

● PL/1 était développé par IBM depuis 1964 comme general-purpose language pour
remplacer FORTRAN sur les machines IBM/360 (inspiration de ALGOL)

● Pour certaines parties du noyau, l'assembleur ALM (Assembly Language for Multics)
était utilisé

● Sans macros jusqu'en 1977

● Surtout pour page control, traffic control et boot, pour déclarer les “base de
données” des programmes

● Assembleur du GE 645 avec microprogrammation

● Certains programmes étaient en BCPL (Basic Combined Programming Language),
hérité de CTSS et développé par Bell Labs

● En général (Huber 1976):

● longueur[programme en ALM] = 2 x longueur[programme en PL/1]

● Après compilation en code machine:

2 x longueur[programme en ALM] = longueur[programme en PL/1]

La documentation de Multics

● Articles parus dans des revues

● Multics programmer manual (MPM)

● Reference Guide (214pp)
● Commands and Active Functions (891pp)
● Subroutines (1566pp)
● Subsystem Writers' Guide (537pp)
● Peripheral Input/Output (188pp)
● Communications Input/Output (178pp)

● Manuels sur les langages PL/1, APL,ALM etc.

● Les rapports documentation le développement de Multics, Multics
Technical Bulletin

● Aujourd'hui, beaucoup en ligne sur multicians.org et bitsavers.org

Structure générale de Multics (1974)

Code dans le noyau de Multics
(1974)

Le développement de l'ordonnanceur de
Multics (scheduler)

● Développement théorique

● J. Salzer Traffic Control in a Multiplexed Computing System
(1966, Thèse)

● R. Rappaport, Implementing Multi-Process Primitives in a
Multiplexed Computer System (1968, Thèse)

● R. Mullen, Priority Scheduler, MTB-193 (1975)
● Développement pratique

● CTSS, "Greenberger-Corbató exponential scheduler", 1965
● Multics: pxss.alm, Process Exchange Switch Stack

– Scheduler, 1e version, 1967
– Workclass Scheduler, 1975
– Deadline Scheduler, 1976

" "
"
" pxss -- The Multics Traffic Controller (Scheduler)
"
" Last Modified: (Date and Reason)
"
" April 1983 by E. N. Kittlitz to DRL instead of 0,ic looping.
" [...]
" Winter 1977 RE Mullen for lockless (lockfull?) scheduler:
" concurrent read_lock, ptlocking state, apte.lock,
" unique_wakeup entry, tcpu_scheduling
" Spring 1976 by RE Mullen for deadline scheduler
" 02/17/76 by S. Webber for new reconfiguration
" 3/10/76 by B Greenberg for page table locking event
" Spring 1975 RE Mullen to implement priority scheduler and
" delete loop_wait code. Also fixed plm/lost_notify bug.
" Last modified on 02/11/75 at 19:49:10 by R F Mabee. Fixed arg-copying &
other bugs.
" 12/10/74 by RE Mullen to add tforce, ocore, steh, tfmax & atws
" disciplines to insure response in spite of long quanta, and
" fix bugs in get_processor, set_newt, and loop_wait unthreading.
" 12/6/74 by D. H. Hunt to add access isolation mechanism checks
" 4/8/74 by S.H.Webber to merge privileged and unprivileged code.
" and to add quit priority and fix lost notify bug
" 5/1/74 by B. Greenberg to add cache code
" 8/8/72 by R.B.Snyder for follow-on
" 2/2/72 by R. J. Feiertag to a simulated alarm clock
" 9/16/71 by Richard H. Gumpertz to add entry rws_notify
" 7/**/69 by Steve H. Webber
"
" "

Pxss.alm preamble

"SCDA8C BCD 07/23/70 1553.6 19706 00000
1 SCDA ************* TIME SHARING SCHEDULING ALGORITHM ************* 07/22/70 1321.5
PAGE 1

 * T. HASTINGS AND R. DALEY
 SCDA0002
 *
 SCDA0003
 * MINOR MODIFICATIONS BY G. SCHROEDER WHEN NEW
 SCDA0004
 * I/O PACKAGE INSTALLED....SUMMER,1965.
 SCDA0005
 * MINOR CHANGES FOR NEW COMMAND PROCESSOR
 SCDA0006
 * SPRING 1969 P.R. BOS
 SCDA0007
 *
 SCDA0008
 * THE SCHEDULING ALGORITHM PERFORMS THE FOLLOWING FUNCTIONS
 SCDA0009
 *
 SCDA0010
 * 1. DETERMINES WHICH USER IS TO RUN NEXT
 SCDA0011
 * 2. DETERMINES WHEN NEXT USER IS TO RUN
 SCDA0012
 * 3. DETERMINES HOW LONG NEXT USER IS TO RUN
 SCDA0013
 * 4. CHARGES USERS FOR SWAPPING AND RUNNING TIME
 SCDA0014
 * 5. KEEPS TRACK OF THE STATUS OF EACH USER
 SCDA0015
" "

CTSS Time sharing scheduling algorithm, preamble

In order to optimize the response time to a user's command or program, the
supervisor uses a multi-level scheduling algorithm. The basis of the
algorithm is the assignment of each program as it enters working or
waiting command status to an nth level priority queue. Programs are
initially entered at a level which is a function of the program size (i.e.
at present, programs of less than 4k words enter at level 2 and longer
ones enter at level 3). There are currently 9 levels (0-8). The process
starts with the supervisor operating the program which is first in the
queue at the lowest occupied level, L. the program executes for a time
limit = P.L quanta; a quantum of time is one half second. If the program
has not finished (left working status) by the end of the time limit, it is
placed at the end of the next higher level queue. The program at the head
of the lowest occupied level is then brought in. If program P enters the
system at a lower level than the program currently running, and if the
current program P1 has run at least as long as P is allotted, then P1 will
be returned to the head of its queue and P will be run.

CTSS Time sharing scheduling algorithm, 1969

Les procès définis par Salzer dans sa thèse, 1966

Structure générale par Salzer dans sa thèse, 1966

A computer system is a vehicle in which various tasks or processes are
executed. In all computer systems, at least two primitive process control
functions exist. These are:
1. The ability to create or introduce new processes. We will call this the
process creation primitive.
2. The ability to forceably halt the execution of a process. This ability
rests in some force or power outside the process (possibly in another
process. We will call this the process destruction primitive.
3. The ability for a process to declare that it has finished and ought to
be terminated. We will call this the suicide primitive.

In his PhD, Salzer proposed to add 4 primitives:
1. The block primitive which includes suicide.
2. The wake up primitive.
3. The reschedule primitive (originally named restart by Saltzer) .
4. The stop primitive (originally named quit by Saltzer) .
These four primitives make up what Saltzer calls the Process Exchange.

The Process Wait and Notify (PWN) facility offered its users four entry
points: addevent , delevent , wait , and notify . Addevent allowed a
process to allocate an entry and to thread the entry onto a particular
list. Delevent allowed a process to unthread itself from a list and
deallocate its entry. Wait allowed a process to check that it was still on
a given list. If the process was still on the list wait called block. If
not, wait returned. Notify allowed a process to pick up an entire list,
call wakeup for each process on the list and unthread the entries from the
list.

 Procès dans la thèse de Rappaport, 1968

Structure générale par Rappaport dans sa thèse, 1968

This MTB proposes that the scheduler allow the grouping of processes into
work classes and provide each work class with a guaranteed percentage of
available cpu time. Conceptually each work class will be assigned a
virtual processor […]
The actual algorithm used to enforce the proper sharing of the cpu
resource will be as follows: Imagine the existence of a system virtual
clock which increments as virtual time is used by non-idle processes.
Imagine also that each work class has a store of credits (in units of
microseconds) which is continually growing at a rate proportional to the
speed of the virtual clock multiplied by the fraction of cpu resources
which the work class is to receive. Suppose further that the store of
credits for the work class is decremented as members actually consume
virtual cpu time. Clearly it is undesirable to allow credits to build up
indefinitely for a work class with no processes ready, so a maximum value
is set on the number of credits which can be accumulated. In addition the
value is restricted from ever becoming negative. The algorithm for chosing
the next work class from which to choose a process to which to award
eligibility may then be as simple as choosing that work class which has
accumulated the maximum number of credits.

Multics Workclass Scheduler, 1975

In 1975-1976, Bob Mullen added features to the scheduler to provide more
efficient support for daemons driving physical devices such as printers.
allow precise tuning of workloads for competitive benchmarks. The version
of the scheduler is called the "Deadline Scheduler."
The deadline scheduler used the workclass structures to implement a wholly
different scheduler in which neither the FB-n nor the percentage
parameters were used. Considering that most people do not understand the
FB-n algorithm, the top level view was that the scheduler could be
operated in either "percent" mode or "deadline" mode.
Using some workclasses with virtual deadlines along with a few with
realtime deadlines was a convenient way to tune benchmarks with response
time requirements which varied for different user scripts.

Multics deadline scheduler, 1976

The traffic control subsystem is implemented almost entirely by one
large ALM program named pxss. Various entries into pxss are used by
other ring-0 procedures to change the state of the current process or
to send a wakeup signal to some other process. Most of pxss runs in a
wired environment with interrupts masked, in order to protect critical
data bases (most notably the wired segment tc_data).

MDD-19, 1986

Without a theory of computing systems to fall back on,designing of such
complex systems becomes an art, rather than a science, in which it is
impossible to prove the degree to which working solutions to problems are
in any sense optimum solutions. In much the same way as authors write
books, large computer systems go through several drafts before they begin
to take shape. In the absence of a theory one can only cope with the
complexity of the situation by proceeding in an orderly fashion to first
produce an initial working model of the desired system. This part of the
work represents the major effort of the design and implementation project.
Once having arrived at this benchmark, many of the problems may then be
seen in a clearer light and revisions to the working model are implemented
much more quickly than were the original modules. As to the development of
a theory, one gets the impression that it will be a long time in coming.

 Conclusion de la thèse de Rappaport, 1968

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

